COMFA Model Studies (Open Access)
The COMFA model: Development & Testing
- Graham, D. A., Vanos, J. K., Kenny, N. A., Brown, R. D. J. I. j. o. e. r., & health, p. (2017). Modeling the effects of urban design on emergency medical response calls during extreme heat events in Toronto, Canada. International journal of Environmental Research and Public Health, 14(7), 778. doi:https://doi.org/10.3390/ijerph14070778
- Hirabayashi, S., Abe, T., Imamura, F., & Morioka, C. (2018). Development of a distributed modeling framework to estimate thermal comfort along 2020 Tokyo Olympic Marathon course. Atmosphere, 9(6), 210. doi:https://doi.org/10.3390/atmos9060210
- Vanos, J. K., Warland, J. S., Gillespie, T. J., Slater, G. A., Brown, R. D., & Kenny, N. A. (2012). Human energy budget modeling in urban parks in Toronto and applications to emergency heat stress preparedness. Journal of Applied Meteorology and Climatology, 51(9), 1639-1653. doi:https://doi.org/10.1175/JAMC-D-11-0245.1
The COMFA model: Applied to Urban Design
- Boukhelkhal, I., & Bourbia, P. F. (2016). Thermal comfort conditions in outdoor urban spaces: Hot dry climate-Ghardaia-Algeria. Procedia Engineering, 169, 207-215. doi:https://doi.org/10.1016/j.proeng.2016.10.025
- Coccolo, S., Mauree, D., Naboni, E., Kaempf, J., & Scartezzini, J.-L. (2017). On the impact of the wind speed on the outdoor human comfort: A sensitivity analysis. Energy Procedia, 122, 481-486. doi:https://doi.org/10.1016/j.egypro.2017.07.297
- Herdt, A. J., Brown, R. D., Scott-Fleming, I., Cao, G., MacDonald, M., Henderson, D., & Vanos, J. K. (2018). Outdoor thermal comfort during anomalous heat at the 2015 Pan American games in Toronto, Canada. Atmosphere, 9(8), 321. doi:https://doi.org/10.3390/atmos9080321
- Kosaka, E., Iida, A., Vanos, J., Middel, A., Yokohari, M., & Brown, R. (2018). Microclimate variation and estimated heat stress of runners in the 2020 Tokyo Olympic Marathon. Atmosphere, 9(5), 192. doi:https://doi.org/10.3390/atmos9050192
- Lee, I., Voogt, J. A., & Gillespie, T. J. (2018). Analysis and comparison of shading strategies to increase human thermal comfort in urban areas. Atmosphere, 9(3), 91. doi:https://doi.org/10.3390/atmos9030091
- Vanos, J. K., Middel, A., Poletti, M. N., & Selover, N. J. (2018). Evaluating the impact of solar radiation on pediatric heat balance within enclosed, hot vehicles. Temperature, 5(3), 276-292. doi:https://doi.org/10.1080/23328940.2018.1468205
The COMFA model: Assessed in the Context of other Thermal Comfort Models
- Antonini, E., Vodola, V., Gaspari, J., & De Giglio, M. (2020). Outdoor Wellbeing and Quality of Life: A Scientific Literature Review on Thermal Comfort. Energies, 13(8), 2079. doi:https://doi.org/10.3390/en13082079
- Binarti, F., Koerniawan, M. D., Triyadi, S., Utami, S. S., & Matzarakis, A. (2020). A review of outdoor thermal comfort indices and neutral ranges for hot-humid regions. Urban Climate, 31, 100531. doi:https://doi.org/10.1016/j.uclim.2019.100531
- Elnabawi, M. H., & Hamza, N. (2020). Behavioural Perspectives of Outdoor Thermal Comfort in Urban Areas: A Critical Review. Atmosphere, 11(1), 51. doi:https://doi.org/10.3390/atmos11010051
- Mauree, D., Naboni, E., Coccolo, S., Perera, A. T. D., Nik, V. M., & Scartezzini, J.-L. (2019). A review of assessment methods for the urban environment and its energy sustainability to guarantee climate adaptation of future cities. Renewable and Sustainable Energy Reviews, 112, 733-746. doi:https://doi.org/10.1016/j.rser.2019.06.005
- Ruiz, M. A., & Correa, E. N. (2014). Developing a thermal comfort index for vegetated open spaces in cities of arid zones. Energy Procedia, 57, 3130-3139. doi:https://doi.org/10.1016/j.egypro.2015.06.056
- Santos Nouri, A., Costa, J. P., Santamouris, M., & Matzarakis, A. (2018). Approaches to outdoor thermal comfort thresholds through public space design: A review. Atmosphere, 9(3), 108. doi:https://doi.org/10.3390/atmos9030108
The COMFA Model: International Applications
- Adiguzel, G. (2012). Analysing the Impacts of Different Urban Green Areas on Human Thermal Comfort in Bornova, İzmir. Int. Environmental Application & Science, 13(1), 50-56. https://dergipark.org.tr/en/download/article-file/567120
- Aram, F., García, E. H., Solgi, E., & Mansournia, S. (2019). Urban green space cooling effect in cities. Heliyon, 5(4), e01339. doi:https://doi.org/10.1016/j.heliyon.2019.e01339
- Brown, R. D. (2018). Urban Design and City Microclimates. Atmosphere, 9(11), 448. doi:https://doi.org/10.3390/atmos9110448
- Brown, R. D., & Corry, R. C. (2020). Evidence-Based Landscape Architecture for Human Health and Well-Being. Sustainability, 12(4), 1360. doi:https://doi.org/10.3390/su12041360
- Canan, F., Golasi, I., Ciancio, V., Coppi, M., & Salata, F. (2019). Outdoor thermal comfort conditions during summer in a cold semi-arid climate. A transversal field survey in Central Anatolia (Turkey). Building and environment, 148, 212-224. doi:https://doi.org/10.1016/j.buildenv.2018.11.008
- Joe, P., Belair, S., Bernier, N., Bouchet, V., Brook, J., Brunet, D., . . . Driedger, N. (2018). The environment Canada pan and parapan American science showcase project. Bulletin of the American Meteorological Society, 99(5), 921-953. doi:https://doi.org/10.1175/BAMS-D-16-0162.1
- Joustra, J., & Jansen, A. (2014). Thermal simulation of a dinghy sailor. Procedia Engineering, 72, 672-677. doi:https://doi.org/10.1016/j.proeng.2014.06.114
- Lenzholzer, S. (2010). Engrained experience—a comparison of microclimate perception schemata and microclimate measurements in Dutch urban squares. International Journal of Biometeorology, 54(2), 141-150. doi:https://doi.org/10.1007/s00484-009-0262-z
- Lenzholzer, S., & de Vries, S. (2020). Exploring outdoor thermal perception—a revised model. International Journal of Biometeorology, 64(2), 293-300. doi:https://doi.org/10.1007/s00484-019-01777-z
- Liu, B., Lian, Z., & Brown, R. D. (2019). Effect of Landscape Microclimates on Thermal Comfort and Physiological Wellbeing. Sustainability, 11(19), 5387. doi:https://doi.org/10.3390/su11195387
- Musa, A., Ismaila, S., Waheed, M., & Olayanju, T. (2015). An Approach of Exergy Analysis of Human Physiological Response in the Outdoor Conditions during Blocklaying in Ogun State, Nigeria. Current Journal of Applied Science and Technology, 408-416. doi:https://doi.org/10.9734/BJAST/2015/14885
- Musaa, A., Ismailab, S., Waheedb, M., & Olayanjuc, T. (2015). Application of Software for the Prediction of Heat Loss in Outdoor Condition during Physical Activity in Nigeria. J. of Thermal & Environmental Engineering, 9(1), 41-46. doi:https://doi.org/10.5383/ijtee.09.01.006, https://www.researchgate.net/publication/271071824_Application_of_software_for_the_prediction_of_heat_loss_in_outdoor_condition_during_physical_activity_in_nigeria
- Nikolopoulou, M. (2011). Outdoor thermal comfort. Frontiers in Bioscience, S3, 1552-1568. doi:https://doi.org/10.2741/245
- Staiger, H., Laschewski, G., & Matzarakis, A. (2019). Selection of appropriate thermal indices for applications in human biometeorological studies. Atmosphere, 10(1), 18. doi:https://doi.org/10.3390/atmos10010018
- Takebayashi, H. (2018). A simple method to evaluate adaptation measures for urban heat island. Environments, 5(6), 70. doi:https://doi.org/10.3390/environments5060070
- Takebayashi, H., Okubo, M., & Danno, H. (2020). Thermal Environment Map in Street Canyon for Implementing Extreme High Temperature Measures. Atmosphere, 11(6), 550. doi:https://doi.org/10.3390/atmos11060550
- Tapias, E., & Schmitt, G. (2014). Climate-sensitive urban growth: outdoor thermal comfort as an indicator for the design of urban spaces. WIT Transactions on Ecology and the Environment, 191, 623-634. doi:https://doi.org/10.2495/SC140521
Conference Papers including the COMFA Model
- Angelotti, A., Dessi, V., & Scudo, G. (2007). The evaluation of thermal comfort conditions in simplified urban spaces: the COMFA+ model. Paper presented at the 2nd PALENC Conference & 28th AIVC Conference on Building Low Energy Cooling and Advanced Ventilation Technologies in the 21st Century, Crete island, Greece. https://www.researchgate.net/publication/237710211_The_evaluation_of_thermal_comfort_conditions_in_simplified_urban_spaces_The_COMFA_model
- Canan, F. (2017). Thermal Comfort in Outdoor Urban Space A Case Study in Konya City Center. Paper presented at the International Ecological Architecture and Planning Symposium, Antalya, Turkey. https://mafiadoc.com/thermal-comfort-in-outdoor-urban-space-a-case-study-in-konya-city-_5a0b53831723dd04d750d81c.html
- Coccolo, S., Kämpf, J. H., & Scartezzini, J.-L. (2015). Outdoor human comfort and climate change. A case study in the EPFL campus in Lausanne. Paper presented at the 9th International Conference on Urban Climate jointly with 12th Symposium on the Urban Environment, Basel, Switzerland. http://www.meteo.fr/icuc9/LongAbstracts/udc7-4-8011651_a.pdf
- Gaitani, N., Santamouris, M., & Mihalakakou, G. (2005). Thermal comfort conditions in outdoor spaces. Paper presented at the Proceedings of International Conference on Passive and Low Energy Cooling, Santorini, Greece. https://www.aivc.org/sites/default/files/members_area/medias/pdf/Inive/palenc/2005/Gaitani.pdf
- Latini, G., Grifoni, R. C., & Tascini, S. (2010). Thermal comfort and microclimates in open spaces. Paper presented at the Proceedings Building XI Conference, Clearwater Beach, FL. https://web.ornl.gov/sci/buildings/conf-archive/2010%20B11%20papers/79_Latini.pdf
- Mauree, D., Coccolo, S., Kämpf, J., & Scartezzini, J.-L. (2016). Multi-scale modelling to assess human comfort in urban canyons. Paper presented at the Sustainable Built Environment (SBE) regional conference - Expanding boundaries, Zurich, Switzerland. https://infoscience.epfl.ch/record/220657?ln=en
- Monteiro, L. M. (2005). Review of numerical modelling of outdoor thermal comfort. Paper presented at the Proceedings of the World Sustainable Building Conference, Tokyo, Japan. https://pdfs.semanticscholar.org/057a/cd626720aadfda240c0a75a144955fc9b9a5.pdf
- Pantavou, K., & Santamouris, M. (2011). EVALUATING THE PERFORMANCE OF SELECTED THERMO-PHYSIOLOGICAL INDICES ON QUANTIFYING BIOCLIMATIC CONDITIONS FOR PEDESTRIANS IN A STREET CANYON. Paper presented at the 2011 AIVC-TIGHTVENT conference, Brussels, Belgium. https://www.aivc.org/sites/default/files/56.1367218040.full_.pdf
- Park, S., & Tuller, S. E. (2009). Modelling human radiation exchange in outdoor urban environments. Paper presented at the The seventh International Conference on Urban Climaten, Yokohama, Japan. https://pdfs.semanticscholar.org/fe38/67777a2e7d0963057cfde77fefcd0e97a858.pdf
- Ruiz, M. A., Correa, E. N., Cantón, M. A., & Lesino, G. (2011). THERMAL COMFORT AND URBAN CLIMATE DUE TO THE MORPHOLOGY OF URBAN PARKS IN ARID ZONES. Paper presented at the ISES Solar World Congress 2011, Kassel, Germany. http://proceedings.ises.org/paper/swc2011/swc2011-0199-Alchapar.pdf
- Zanelli, A., Monticelli, C., Mollaert, M., & Stimpfle, B. (2019). A lightweight textile device for urban microclimate control and thermal comfort improvement: concept project and design parameters. Paper presented at the Proceedings of the TensiNet Symposium 2019 Milan, Italy. http://proceedings.ises.org/paper/swc2011/swc2011-0199-Alchapar.pdf
Theses and Dissertation Using the COMFA Model
- BHATIA, N. (1997). MlTlGATlON OF HYPERTHERMIA IN OUT OOOR ENVIRONMENTS FOR THE ELDERLY. (Master's thesis), The University of Guelph, Guelph, Canada. https://www.collectionscanada.gc.ca/obj/s4/f2/dsk2/ftp04/mq24443.pdf
- Briggs, A. (2014). Effects of facial cooling on thermal comfort in windy winter conditions. (Master's thesis), The University of Guelph, Guelph, Canada. https://atrium.lib.uoguelph.ca/xmlui/bitstream/handle/10214/8025/Briggs_Andrew_201404_MLA.pdf?sequence=1&isAllowed=y
- Coccolo, S. (2017). Bioclimatic design of sustainable campuses using advanced optimisation methods. (Doctoral dissertation), Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland. https://infoscience.epfl.ch/record/231147
- Graham, A. A. (2012). Census Tract-Level Outdoor Human Thermal Comfort Modelling and Heat-Related Morbidity Analysis During Extreme Heat Events in Toronto: The Impact of Design Modifications to the Urban Landscape. (Master's thesis), The University of Guelph, Guelph, Canada. https://atrium.lib.uoguelph.ca/xmlui/bitstream/handle/10214/4041/Graham_Andrew_201209_MLA.pdf?sequence=1&isAllowed=y
- Hardin, A. W. (2015). Assessment of urban heat islands during hot weather in the US Northeast and linkages to microscale thermal and radiational properties. (Master's thesis), Texas Tech University, Lubbock, TX. https://ttu-ir.tdl.org/handle/2346/63661
- Herdt, A. J. (2017). A multi-index investigation of the spatiotemporal relationships between heat and EMS calls during the 2015 Pan American Games in Toronto, Canada. (Master's thesis), Texas Tech University, Lubbock, TX. https://ttu-ir.tdl.org/handle/2346/73150
- Kazakos, C. M. (2019). Environmental Emergency Calls in Dallas, Texas: Applying the BRACE Model to Assess the Effects of Microclimates on Urban Design & Human Heat Stress. (Master's thesis), The University of Texas at Arlington, Arlington, TX. https://rc.library.uta.edu/uta-ir/handle/10106/28111
- Mazhar, N. (2012). A Microclimatic Analysis of Ancient and Contemporary Urban Landscape Patterns in Lahore-Pakistan. (Master's thesis), The University of Guelph, Guelph, Canada. https://atrium.lib.uoguelph.ca/xmlui/handle/10214/3943
- Park, S. (2011). Human-urban radiation exchange simulation model. (Doctoral dissertation), University of Victoria, Victoria, Canada. http://dspace.library.uvic.ca/handle/1828/3262
- Vanos, J. (2011). Modelling outdoor thermal comfort of humans performing physical activity: applications to health and emergency heat stress preparedness. (Doctoral dissertation), The University of Guelph, Guelph, Canada. https://atrium.lib.uoguelph.ca/xmlui/bitstream/handle/10214/3150/Vanos_Thesis.pdf?sequence=1&isAllowed=y
- Xie, L. (2018). Urban Heat Islands as Opportunities to Extend the Use of Open Spaces. (Master's thesis), The University of Guelph, Guelph, Canada. https://atrium.lib.uoguelph.ca/xmlui/bitstream/handle/10214/12966/Xie_Luozijie_201805_MLA.pdf?sequence=3&isAllowed=y